Learning Exponential Random Graph Models

نویسندگان

  • Wen Pu
  • Jaesik Choi
  • Dorothy Espelage
چکیده

Exponential Random Graphs are common, simple statistical models for social network and other structures. Unfortunately, inference and learning with them is hard for networks larger than 20 nodes because their partition functions are intractable to compute precisely. In this paper, we introduce a novel linear-time deterministic approximation to these partition functions. Our main insight enabling this advance is that subgraph statistics is sufficient to derive a lower bound for partition functions. The proposed method differs from existing methods in the way it exploits asymptotic properties of subgraph statistics. In comparison to current Monte Carlo simulation based methods, the new method is scalable, stable, and precise enough for inference tasks. We show these strengths of the new approach experimentally and theoretically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Marginalization for Exponential Random Graph Models

For exponential random graph models, under quite general conditions, it is proved that induced subgraphs on node sets disconnected from the other nodes still have distributions from an exponential random graph model. This can help in the theoretical interpretation of such models. An application is that for saturated snowball samples from a potentially larger graph which is a realization of an e...

متن کامل

A Monte Carlo Metropolis-Hastings Algorithm for Sampling from Distributions with Intractable Normalizing Constants

Simulating from distributions with intractable normalizing constants has been a long-standing problem in machine learning. In this letter, we propose a new algorithm, the Monte Carlo Metropolis-Hastings (MCMH) algorithm, for tackling this problem. The MCMH algorithm is a Monte Carlo version of the Metropolis-Hastings algorithm. It replaces the unknown normalizing constant ratio by a Monte Carlo...

متن کامل

A Perfect Sampling Method for Exponential Family Random Graph Models

Generation of deviates from random graph models with non-trivial edge dependence is an increasingly important problem. Here, we introduce a method which allows perfect sampling from random graph models in exponential family form (“exponential family random graph” models), using a variant of Coupling From The Past. We illustrate the use of the method via an application to the Markov graphs, a fa...

متن کامل

Phase Transitions in Exponential Random Graphs

We derive the full phase diagram for a large family of exponential random graph models, each containing a first order transition curve ending in a critical point.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013